The Engineering and Science Behind BoostLine Connecting Rods

We reveal the technology behind our brand new 3 pocket BoostLine connecting rod design and how it's able to support 2,000hp+

The lineage of drag race engines – or any race engine for that matter – is written within eyeshot of that shelf of broken parts. This is an ancestry of a learning curve. As power increases, the stress on internal engine components also increases. As piston designs improve to take the abuse of immense cylinder pressures of especially turbocharged race engines, that load is passed right on to the connecting rod.

Keeping Things Straight

It’s clear there was a need for a stronger connecting rod for these high output turbocharged, supercharged and nitrous-assisted engines. Good connecting rods were literally bending under the incredible cylinder pressure loads of 2,000 hp small-block and big-block engines as well as their four cylinder cousins. This has renewed the connecting rod controversy of H-beam versus I-beam.

The BoostLine’s unique 3-pocket beam makes it easy to identify. This design incorporates the best features of both the H-beam and I-beam connecting rods. Its 4340 forged steel body combines H-beam mass with I-beam strength.

 Both sides have their proponents; we won’t review it all here. We’ll just leave it at the H-beam is typically lighter while the I-beam is generally acknowledged as stronger. Weight plays a big part in the overall consideration with regard to how well the rod can handle what engineers call ‘tensile loading’. Smart engine builders know that while boosted engines can bend a connecting rod with compressive loads, engine speed also plays a big role.

This FEA illustration reveals the hidden strength of the BoostLine rod. Compressive
Read more »